
Contents

Requirements 2

Step 1: Create an Ubuntu One account 2
1.1 Snapcraft credentials . 2
1.2 Retrieve your developer account ID 3

Step 2: Create the model assertion 3
2.1 Download a model file . 3
2.2 Edit the model file . 4

“authority-id” and “brand-id” . 4
timestamp . 4
snaps . 4
Complete model example . 5

Step 3: Sign the model assertion 6
3.1 Create a key . 6
3.2 Register the key . 6
3.3 Update the timestamp . 7
3.4 Sign the model . 7

Step 4: Build the image 8

Step 5: Boot the image 9

1

This tutorial will guide you through the steps required to create your own Ubuntu Core

image, with your own selection of snaps, and install it on a Renesas RZ device.

Requirements

In addition to having a basic understanding of Linux and running commands from the

terminal, this tutorial has hardware requirements.

For the host system used to build the image:

- Ubuntu 24.04 LTS or later installed

- MicroSD card reader

- Internet connectivity

- 10GB of free storage space

The target device:

- RZ/G2L or RZ/G2LC or RZ/G2UL

- 4GB+ microSD card

- keyboard and display (for setup only)

- Ethernet network connectivity

Step 1: Create an Ubuntu One account

You will need an Ubuntu One account with an uploaded public key of a locally generated

SSH key pair.

See Use Ubuntu One for SSH for instructions on how to create an account and register

an SSH key.

With your account created, ensure you first login and accept the Terms and Conditions.

With this done, your Ubuntu One account is ready to use.

You will now need to retrieve your developer account identifier. This is part of your

Ubuntu One account and is used to link your account to any Ubuntu Core images you

create.

The next steps need to be performed in an existing Ubuntu LTS environment.

1.1 Snapcraft credentials

Your developer identifier can be retrievedwith the snapcraft command, the tool that’s

also used to build and publish snaps. It can be installed by running:

sudo snap install snapcraft --classic

We now need to use snapcraft to export your login authentication credentials, and to

place them within an environment variable.

snapcraft export-login credentials.txt

export SNAPCRAFT_STORE_CREDENTIALS=$(cat credentials.txt)

2

https://releases.ubuntu.com/24.04/
https://snapcraft.io/account
https://documentation.ubuntu.com/core/how-to-guides/manage-ubuntu-core/use-ubuntu-one-ssh
https://snapcraft.io/login
https://snapcraft.io/docs/snapcraft-overview

If you have yet to login to your Ubuntu One account with the snapcraft command, you

will first be prompted for your email address, password, and second-factor authentica-

tion (if used).

1.2 Retrieve your developer account ID

With your authentication in place, the snapcraft whoami command will now display

your developer identifier after the id field:

$ snapcraft whoami

email: <email-address>

username: <username>

id: xSfWKGdLoQBoQx88

permissions: package_access, package_manage, package_metrics,

package_push, package_register, package_release, package_update

channels: no restrictions

expires: 2024-04-17T10:25:13.675Z

In the output above, the example id is xSfWKGdLoQBoQx88 – we’ll use this ID for subse-

quent examples, but you should obviously use your own ID from now on.

Step 2: Create the model assertion

At the heart of custom Ubuntu Core image creation is the model assertion. An assertion

is a signed recipe that describes the components that comprise a complete image. An

assertion is provided as JSON in a text file which is signed by a GPG key associated with

the publisher’s Ubuntu One account.

The model contains: * identification information, such as the developer-id and model

name. * which essential snaps make up the device system. * other required or optional

snaps that implement the device application functionality.

See below for details on how to download and modify a model file to include your own

selection of snaps.

2.1 Download a model file

The quickest way to create a new model assertion is to edit a model that already ex-

ists. Reference models for every supported Ubuntu Core device can be found in the

canonical/models GitHub repository.

For this project, we’re going to modify the 64-bit reference model for the Renesas RZ

devices: ubuntu-core24-renesas-rzg2-arm64.json.

Download and save the file locally with the following wget command. We’ve called the

file my-model.json:

wget -O my-model.json \

https://raw.githubusercontent.com/canonical/models/refs/heads/master\

/devices/renesas/rzg2/ubuntu-core24-renesas-rzg2-arm64.json

3

https://documentation.ubuntu.com/core/explanation/core-elements/snaps-in-ubuntu-core
https://github.com/canonical/models
https://raw.githubusercontent.com/canonical/models/refs/heads/master/devices/renesas/rzg2/ubuntu-core24-renesas-rzg2-arm64.json

2.2 Edit the model file

We now need to edit my-model.json using a text editor:

nano my-model.json

The following fields in my-model.json need to be changed:

“authority-id” and “brand-id”

"authority-id": "canonical",

"brand-id": "canonical",

These properties define the authority responsible for the image. Change both instances

of the string “canonical” to your developer id, retrieved with the snapcraft whoami

command. (“xSfWKGdLoQBoQx88”, in our example output). This links the image to your

Ubuntu One account and ensures that only you can push image updates to devices using

your model.

timestamp

"timestamp": "2025-08-19T11:18:21+00:00",

This needs to be provided at the end of the process; we’ll come back to this.

snaps

"snaps": [

{

"default-channel": "24/stable",

"id": "8icb75cOHIxavWWXmkVR2UJePXX3HFkF",

"name": "renesas-rz",

"type": "gadget"

}

]

This section lists the snaps to be included in the image. renesas-rz (shown above),

renesas-kernel, core24 and snapd are the four snaps required for a functioning Ubuntu

Core device. The additional console-conf snap is required for Ubuntu Core 24 devices.

Console-conf is the interactive setup utility that’s used to configure the network and

the default user when the device is first booted. This is marked as optional, but for this

tutorial, it needs to be mandatory to configure the device when it first boots. To do this,

delete the "presence": "optional" line (line 41) and delete the comma at the end

of the preceding line.

Additional snaps are included using the same schema, with each snap requiring the

following fields: - name: simply the snap name. - type: the type of snap. This is app for

standard application snaps. - default-channel: the channel to install the snap from. -

id: a unique snap identifier associated with every published snap. This is snap-id in

the output from snap info <snap-name>.

4

https://documentation.ubuntu.com/core/how-to-guides/image-creation/add-console-conf
https://documentation.ubuntu.com/core/explanation/core-elements/snaps-in-ubuntu-core.md#types-of-snap
https://snapcraft.io/docs/channels

Snaps do not have dependencies, but they do require the presence of the base snap

they were built on. This can be added with the following:

{

"default-channel": "latest/stable",

"id": "dwTAh7MZZ01zyriOZErqd1JynQLiOGvM",

"name": "core24",

"type": "base"

}

The snap-id for a snap is in the output of the snap info <snap-name> command.

Complete model example

After finishing all your edits, the completed my-model.json text file should now contain

the following:

{

"type": "model",

"authority-id": "canonical",

"revision": "1",

"series": "16",

"brand-id": "canonical",

"model": "renesas-rzg2",

"architecture": "arm64",

"base": "core24",

"grade": "signed",

"timestamp": "2025-08-14T08:03:54+00:00",

"snaps": [

{

"default-channel": "24/stable",

"id": "8icb75cOHIxavWWXmkVR2UJePXX3HFkF",

"name": "renesas-rz",

"type": "gadget"

},

{

"default-channel": "24/stable",

"id": "TfkSeypPcvFMoNky5XzwqV6pJSKZ43Hi",

"name": "renesas-kernel",

"type": "kernel"

},

{

"default-channel": "latest/stable",

"id": "dwTAh7MZZ01zyriOZErqd1JynQLiOGvM",

"name": "core24",

"type": "base"

},

{

"default-channel": "latest/stable",

"id": "PMrrV4ml8uWuEUDBT8dSGnKUYbevVhc4",

5

https://snapcraft.io/docs/base-snaps

"name": "snapd",

"type": "snapd"

},

{

"default-channel": "24/stable",

"id": "ASctKBEHzVt3f1pbZLoekCvcigRjtuqw",

"name": "console-conf",

"type": "app"

}

]

}

Step 3: Sign the model assertion

After a model has been created or modified, it must be signed with a GPG key to become

a model assertion. This ensures the model cannot be altered without the key and also

links the created image to both the signed version of the model and your Ubuntu One

account

3.1 Create a key

First make sure there are no keys already associated with your account by running the

snapcraft list-keys command (you will only have a key if you’ve previously signed

an assertion; if you already have a key, you can use that one):

$ snapcraft list-keys

No keys have been registered.

See 'snapcraft register-key --help' to register a key.

Now use snapcraft to create a key called my-model-key (the name is arbitrary):

$ snapcraft create-key my-model-key

Passphrase: <passphrase>

Confirm passphrase: <passphrase>

As shown above, you will be asked for a passphrase. You need to remember this as you’ll

be prompted to enter it whenever you use the key, including the very next step.

TIP: Rather than creating a key for every device, the same key is typically used across all

models or model families.

3.2 Register the key

We now need to upload the key and register it with your Ubuntu One account. This is

accomplished with register-key:

$ snapcraft register-key my-model-key

Enter your Ubuntu One e-mail address and password.

If you do not have an Ubuntu One account,

6

you can create one at https://snapcraft.io/account

Email: <Ubuntu-SSO-email-address>

Password: <Ubuntu-SSO-password>

Registering key ...

Done. The key "my-model-key" (<key fingerprint>) may be used

to sign your assertions.

Regardless ofwhether you’re logged inwith snapcraft, youwill be asked for your account

and password details. You’ll also need to unlock the key with your passphrase, and

when the process is complete, the snapcraft list-keys command will now list the

registered key:

$ snapcraft list-keys

Name SHA3-384 fingerprint

* my-model-key <key fingerprint>

3.3 Update the timestamp

As mentioned earlier, the timestamp in the model assertion must be set to a time and

date after the creation of our key. This means we need to edit my-model.json to

update the timestamp with the current time.

"timestamp": "2025-08-14T08:03:54+00:00",

This is a UTC-formatted time and date value, used to denote the assertion’s creation

time. It needs to be replaced with the current time and date, which can be generated

with the following command:

$ date -Iseconds --utc

2025-08-19T11:18:21+00:00

3.4 Sign the model

A model assertion is created by feeding the JSON file into the snap sign command

with your recently-created key name and capturing the output in the corresponding

model file:

snap sign -k my-model-key my-model.json > my-model.model

You will again be asked for your key’s passphrase.

The resultant my-model.model file contains the signed model assertion and can now

be used to build the image.

If you encounter a gpg: signing failed error while signing your assertion from a non-

desktop session, such as over SSH, run export GPG_TTY=$(tty) first.

7

Step 4: Build the image

Images are built from the recipe contained in the model assertion using ubuntu-image,

a tool to generate a bootable image.

First, install the ubuntu-image command from its snap:

sudo snap install ubuntu-image --classic --edge

The ubuntu-image command requires three arguments; snap to indicate we’re build-

ing a snap-based Ubuntu Core image, --allow-snapd-kernel-mismatch to ignore a

difference in the versions of snapdwe’re using, andfinally, thefilenameof our previously-

signed model assertion to build an image:

$ ubuntu-image snap --allow-snapd-kernel-mismatch my-model.model

[0] prepare_image

WARNING: proceeding to download snaps ignoring validations,

this default will change in the future.

For now use --validation=enforce for validations to be taken

into account, pass instead --validation=ignore to preserve

current behavior going forward

WARNING: the kernel for the specified UC20+ model does not

carry assertion max formats information, assuming possibly

incorrectly the kernel revision can use the same formats

as snapd

WARNING: snapd 2.68+ is not compatible with a kernel

containing snapd prior to 2.68

[1] load_gadget_yaml

[2] set_artifact_names

[3] populate_rootfs_contents

[4] generate_disk_info

[5] calculate_rootfs_size

[6] populate_bootfs_contents

[7] populate_prepare_partitions

[8] make_disk

[9] generate_snap_manifest

Build successful

You can safely ignore thewarnings, and the entire process should only take a fewminutes

(depending on your connectivity), with the creation of aubuntu.imgUbuntu Core image

file being the end result.

TIP: The console-conf user-interface that configures the network and system user when

a device first boots has migrated to an optional snap in Ubuntu Core 24 and later.

This is covered in Create a model assertion, but ubuntu-image can add console-conf

at image build time with an additional --snap console-conf argument. For more

details on these changes, see console-conf for device onboarding.

8

https://documentation.ubuntu.com/core/tutorials/build-your-first-image/create-a-model
https://github.com/canonical/ubuntu-image
https://documentation.ubuntu.com/core/tutorials/build-your-first-image/create-a-model
https://documentation.ubuntu.com/core/how-to-guides/image-creation/add-console-conf

Step 5: Boot the image

Now that you have a custom image for a Renesas RZ/G devices on amicroSD card. Follow

the intructions here to flash the image and boot the device.

The instruction is for G2L, but it will work for G2LC and G2UL as well. The image is

identical, the only difference are the bootassets - they are specific per device. You can

distinguish them easily: the board name is mentioned in the filename.

Name Flash Writer

G2L Flash_Writer_SCIF_RZG2L_ SMARC_DDR4_2GB.mot

G2LC Flash_Writer_SCIF_RZG2LC_ SMARC_DDR4_2GB.mot

G2UL Flash_Writer_SCIF_RZG2UL_ SMARC_DDR4_1GB_1PCS.mot

Name FIP file

G2L fip-smarc-rzg2l_pmic.srec

G2LC fip-smarc-rzg2lc.srec

G2UL fip-smarc-rzg2ul.srec

Name 2nd stage BL

G2L bl2_bp-smarc-rzg2l_pmic.srec

G2LC bl2_bp-smarc-rzg2lc.srec

G2UL bl2_bp-smarc-rzg2ul.srec

Please get the bootassets for your device here:

- G2L

- G2LC

- G2UL

9

https://documentation.ubuntu.com/core/tutorials/try-pre-built-images/install-on-a-device/install-on-renesas/
https://people.canonical.com/~platform/images/renesas-iot/uc24/x02/bootassets-rzg2l.tar.gz
https://people.canonical.com/~platform/images/renesas-iot/uc24/x02/bootassets-rzg2lc.tar.gz
https://people.canonical.com/~platform/images/renesas-iot/uc24/x02/bootassets-rzg2ul.tar.gz

	Requirements
	Step 1: Create an Ubuntu One account
	1.1 Snapcraft credentials
	1.2 Retrieve your developer account ID

	Step 2: Create the model assertion
	2.1 Download a model file
	2.2 Edit the model file
	“authority-id” and “brand-id”
	timestamp
	snaps
	Complete model example

	Step 3: Sign the model assertion
	3.1 Create a key
	3.2 Register the key
	3.3 Update the timestamp
	3.4 Sign the model

	Step 4: Build the image
	Step 5: Boot the image

